metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Poly[[triaquazinc(II)]- μ_3 -4-nitrophthalato- $\kappa^3 O^1: O^2: O^{2'}$]

Ming-Lin Guo* and Chen-Hu Guo

School of Materials and Chemical Engineering and Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China Correspondence e-mail: guomlin@yahoo.com

Received 27 September 2007 Accepted 30 October 2007 Online 24 November 2007

In the title complex, $[Zn(C_8H_3NO_6)(H_2O)_3]_n$, the two carboxylate groups of the 4-nitrophthalate dianion ligands have monodentate and 1,3-bridging modes, and Zn atoms are interconnected by three O atoms from the two carboxylate groups into a zigzag one-dimensional chain along the *b*-axis direction. The Zn atom shows distorted octahedral coordination as it is bonded to three O atoms from carboxylate groups of three 4-nitrophthalate ligands and to three O atoms of three non-equivalent coordinated water molecules. The one-dimensional chains are aggregated into two-dimensional layers through inter-chain hydrogen bonding. The whole three-dimensional structure is further maintained and stabilized by inter-layer hydrogen bonds.

Comment

Aromatic dicarboxylate ligands, such as phthalic acid (H₂phth), have been used in the construction of polymeric metal complexes because they can act in bis-monodentate, bisbidentate or a combination of coordination modes to form short bridges via one carboxylate end or long bridges via the benzene ring, leading a great variety of structures. For example, as a bis-monodentate ligand, the phthalate dianion is known to bond to metals, leading to a one-dimensional chain complex, e.g. in {[Cu(phth)(1,10-phenanthroline)(H₂O)]-- H_2O_{n} (Ye, Sun *et al.*, 2005), [Mn(phth)(pyrazine)(H_2O_{2}]_n (Ma *et al.*, 2004) and $[Zn(phth)(1-methylimidazole)_2]_n$ (Baca et al., 2004). On the other hand, in bis-bidentate and combined modes of coordination, the phthalate dianion can be found chelating through the two carboxylate O atoms, as in $[Co(phth)(2,2'-biimidazole)_2]$ (Ye, Ding et al. 2005), {[Ni- $(\text{phth})(4,4'-\text{bipyridine})(H_2O)]\cdot 3H_2O\}_n$ (Yang *et al.*, 2003), $[(bpy)_2Zn(phth)H(phth)Zn(bpy)_2](Hphth)\cdot H_2phth\cdot 2H_2O(bpy)_2$ is 2,2'-bipyridine) (Baca et al., 2003) and {[Cu2(phth)2(imida $zole_4(H_2O)$]·H₂O}_n (Fu et al., 2006). However, in spite of this wealth of possibilities, only a few complexes of metal-nitrophthalate systems have been reported to date. We have used the 4-nitrophthalate dianion as a ligand and obtained the title novel six-coordinate 4-nitrophthalate-zinc complex, (I). We describe here the structure of this one-dimensional metal-nitrophthalate coordination polymer, in which $O-H\cdots O$ inter-chain bonding leads to a three-dimensional supra-molecular network.

The asymmetric unit in (I) comprises one Zn atom, one complete 4-nitrophthate dianion and three non-equivalent water molecules, and is shown in Fig. 1 in a symmetry-expanded view, which displays the full coordination of the Zn atom. Selected geometric parameters are given in Table 1.

The Zn atom is octahedrally coordinated by six O-atom donors (Fig. 1). The four equatorial coordination sites are occupied by two coordinated water molecules (O7 and O8)

Figure 1

A view of the structure of (I), showing the atom-numbering scheme and the coordination polyhedra for the Zn atoms; displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) x, y - 1, z.]

and two O atoms (O4ⁱⁱ and O3ⁱ) from two 4-nitrophthalate ligands. Atom O1 and the third coordinated water molecule (O9) occupy the apical sites of the octahedron. The Zn-O(water) distances range from 2.0976 (18) to 2.2104 (16) Å and the Zn-O(nitrophthalate) distances cover the range 2.0335 (16)–2.0822 (15) Å. The Zn-O(water) bonds are slightly longer than those in [Zn(2-nitroterephthalate)-(H₂O)₃]·H₂O (Guo & Guo, 2007), where they range from 2.051 (2) to 2.090 (2) Å. The *cis*-O-Zn-O angles in (I) range

Figure 2

A view of the packing of (I) down the a axis, showing the one-dimensional chain along the b-axis direction for Zn atoms and the hydrogen-bonding interactions within the chain as dashed lines.

Figure 3

The packing of (I), viewed down the *c* axis, showing the $O7-H7A\cdots O1^{v}$, $O7-H7B\cdots O9^{vi}$ and $O8-H8B\cdots O1^{v}$ hydrogen-bond interactions parallel to the *ab* plane as dashed lines. Symmetry codes are as given in Table 2.

from 81.93 (7) to 106.52 (7)°, and the *trans*-O–Zn–O angles cover the range 164.03 (7)–172.87 (6)°. Thus, the structure of the title complex shows the Zn atom center to be in a distorted octahedral environment with a facial disposition of water molecules.

In the present structure, monodentate, bidentate 1,3-bridging and 1,6-bridging modes via the benzene ring are present (Fig. 2). Atom O1 has a monodentate mode, and atoms O3 and O4 have both a monodentate mode and a bidentate 1,3bridging mode of connection with two Zn atoms. The Zn atoms are interconnected by three O atoms from the two carboxylate groups of the 4-nitrophthalate dianion into a zigzag one-dimensional chain along the *b*-axis direction. In the chain, atoms O1 and O3 adopt a 1,6-bridging bonding mode via the benzene ring to connect with two Zn atoms. In this way, two 4-nitrophthalate dianions interconnect with Zn atoms into two different rings, viz. 14-membered and eight-membered, with the 4-nitrophthalate anions arranged alternately along the infinite one-dimensional chains (Fig. 2). This results in $Zn \cdots Zn$ separations within the chains of 5.686(1) and 4.176 (6) Å. The mean planes of the O1/C1/O2 carboxylate group and the benzene ring make a dihedral angle of $80.0 (3)^\circ$, and the corresponding value for the O3/C4/O4 carboxylate group is 19.1 (3)°; the C–O bond lengths (O1–C1 and O2– C1) of the monodentate carboxylate group are 1.276(3) and 1.240 (3) Å, respectively, and the C–O bond lengths (O3-C4)and O4-C4) of the 1,3-bridging carboxylate group are 1.259 (3) and 1.252 (3) Å, respectively. This indicates that the mesomeric effect for the 1,3-bridging carboxylate group is somewhat greater than that of the monodentate carboxylate group.

The three water molecules and the nitro group (O5/N1/O6)are engaged in distinct hydrogen-bond interactions (Table 2). In the bc plane, neighboring chains are linked via weak O9- $H9B \cdots O5^{iii}$ hydrogen-bond interactions. In this way, a complete two-dimensional layer is formed parallel to the bc plane. The noncoordinated O2 atom is involved in two hydrogen bonds, viz. $O8-H8A\cdots O2^{i}$ and $O9-H9A\cdots O2^{iv}$; these play an important role in the propagation of the onedimensional chain structure, because they participate in the formation of two 12-membered hydrogen-bonded rings $[R_2^2(12)]$ graph sets; Bernstein *et al.*, 1995] (Fig. 2). This also results in the aryl rings of the 4-nitrophthalate ligands stacking in an offset fashion along the a-axis direction. In the crystallographic *ab* plane, $O7-H7A\cdots O1^{v}$, $O7-H7B\cdots O9^{vi}$ and $O8-H8B\cdots O1^{v}$ hydrogen bonds link neighboring chains together via three different $R_2^2(8)$ rings and complete a twodimensional layer parallel to the *ab* plane (Fig. 3). Thus, the three-dimensional connectivity of the structure is achieved.

Experimental

Zinc oxide (0.25 g, 3 mmol) was added to a stirred solution of 4-nitrophthalic acid (0.53 g, 2.5 mmol) in boiling water (20.0 ml) over a period of 20 min. After filtration, slow evaporation of the solvent over a period of two weeks at room temperature provided colorless block-shaped crystals of (I). Crystal data

$$\begin{split} & [\text{Zn}(\text{C}_8\text{H}_3\text{NO}_6)(\text{H}_2\text{O})_3] \\ & M_r = 328.53 \\ & \text{Triclinic, } P\overline{1} \\ & a = 7.0758 \ (12) \text{ Å} \\ & b = 7.2954 \ (12) \text{ Å} \\ & c = 10.8601 \ (18) \text{ Å} \\ & \alpha = 97.317 \ (2)^\circ \\ & \beta = 91.591 \ (3)^\circ \end{split}$$

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.721, T_{\max} = 0.802$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.023$	172 parameters
WR(F) = 0.061 S = 1.10	$\Delta \rho_{\text{max}} = 0.36 \text{ e} \text{ Å}^{-3}$
1910 reflections	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

 $\gamma = 100.621 \ (3)^{\circ}$

Z = 2

 $V = 545.76 (16) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.16 \times 0.12 \times 0.10 \ \mathrm{mm}$

2827 measured reflections

1910 independent reflections 1751 reflections with $I > 2\sigma(I)$

 $\mu = 2.30 \text{ mm}^{-1}$ T = 294 (2) K

 $R_{\rm int}=0.014$

Table 1

Selected geometric parameters (Å, °).

Zn1-O3 ⁱ	2.0561 (16)	2.0561 (16) Zn1-O9	
Zn1-O4 ⁱⁱ	2.0335 (16)	O1-C1	1.276 (3)
Zn1-O1	O1 2.0822 (15) O2-C1		1.240 (3)
Zn1-O7	2.0976 (18)	O3-C4	1.259 (3)
Zn1-O8	2.1595 (16)	O4-C4	1.252 (3)
iii			
$O4^{n}-Zn1-O3^{n}$	106.52 (7)	O7-Zn1-O8	81.93 (7)
O4 ⁱⁱ -Zn1-O1	88.65 (6)	O4 ⁱⁱ -Zn1-O9	91.12 (6)
O3 ⁱ -Zn1-O1	97.36 (6)	O3 ⁱ -Zn1-O9	89.54 (6)
$O4^{ii}$ -Zn1-O7	88.42 (7)	O1-Zn1-O9	172.87 (6)
O3 ⁱ -Zn1-O7	164.03 (7)	O7-Zn1-O9	84.46 (7)
O1-Zn1-O7	88.41 (7)	O8-Zn1-O9	87.34 (7)
$O4^{ii}$ -Zn1-O8	170.33 (7)	O2-C1-O1	126.5 (2)
$O3^i - Zn1 - O8$	83.02 (7)	O4-C4-O3	126.6 (2)
O1-Zn1-O8	91.70 (7)		

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) x, y - 1, z.

All water H atoms were found in difference Fourier maps. However, during refinement, they were fixed at O–H distances of 0.85–0.86 Å, with $U_{iso}(H) = 1.2U_{eq}(O)$. The H atoms of CH groups were treated as riding [C–H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$].

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve

Table 2 Hydrogen bond

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O9-H9B\cdots O5^{iii}$	0.85	2.38	3.027 (3)	134
$O8-H8A\cdots O2^{i}$	0.86	2.06	2.904 (3)	170
$O9-H9A\cdots O2^{iv}$	0.86	1.98	2.794 (2)	158
$O7 - H7A \cdots O1^{v}$	0.85	1.97	2.804 (2)	166
$O7 - H7B \cdots O9^{vi}$	0.85	1.99	2.817 (2)	164
$O8 - H8B \cdot \cdot \cdot O1^{v}$	0.86	2.24	3.043 (2)	156

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (iii) x, y - 1, z + 1; (iv) -x + 1, -y + 1, -z + 1; (v) -x + 2, -y + 2, -z + 1; (vi) -x + 2, -y + 1, -z + 1.

structure: *SHELXTL* (Bruker, 2001); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We thank Tianjin Polytechnic University for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AV3117). Services for accessing these data are described at the back of the journal.

References

- Baca, S. G., Filippova, I. G., Gherco, O. A., Gdaniec, M., Simonov, Y. A., Gerbeleu, N. V., Franz, P., Basler, R. & Decurtins, S. (2004). *Inorg. Chim. Acta*, 357, 3419–3429.
- Baca, S. G., Simonov, Y. A., Gdaniec, M., Gerbeleu, N., Filippova, I. G. & Timco, G. A. (2003). *Inorg. Chem. Commun.* 6, 685–689.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fu, X.-C., Wang, X.-Y., Li, M.-T., Wang, C.-G. & Deng, X.-T. (2006). Acta Cryst. C62, m343–m345.
- Guo, M.-L. & Guo, C.-H. (2007). Acta Cryst. C63, m352-m354.
- Ma, C.-B., Wang, W.-G., Zhang, X.-F., Chen, C.-N., Liu, Q.-T., Zhu, H.-P., Liao, D.-Z. & Li, L.-C. (2004). Eur. J. Inorg. Chem. pp. 3522–3532.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Yang, S.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003). Acta Cryst. E59, m507–m509.

Ye, B.-H., Ding, B.-B., Weng, Y.-Q. & Chen, X.-M. (2005). Cryst. Growth Des. 5, 801–806.

Ye, C.-H., Sun, H.-L., Wang, X.-Y., Huang, R.-L., Li, J.-R. & Gao, S. (2005). J. Chem. Crystallogr. 35, 381–384.